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1. _Introduction

Plasma particle-in-cell (PIC) codes {Birdsall and
Langdon,1985] have become standard research tools in
plasma physics research. A PIC code models a plasma
as many test particles and follows the evolution of the
orbits of individua test particles in the self-consistent
electromagnetic fields. Each time step in a PIC code
consists of two maor stages. the particle push to up-
date the particle orbits and calculate the new charge
and/or current density, and the field solve to update the
electromagnetic fields. Two particle- grid interpolation
steps are used to link particle orbits and the field com-
ponents. a “gather” step is used to interpolate fields
from grid points to particle positions and a “scatter”
step to deposit the charge/current of each particle to
grid points.

Most existing P1C codes are based on the use of or-
thogonal grid (Cartesian or cylindrical). This restricted
their applications to problems with simple geometries.
In this paper we describe a new electromagnetic PIC
algorithm that uses body-fitted curvilinear coordinates
for large-scale simulations of problems involving com-
plex geometries (e.g. high power microwave devices) on
paralel supercomputers.

Our numerical formulation is based onthe use of de-
formable hexahedral cells which are logically connected.
We define a physical space where the cells can be de-
formed in shape to body-fit complex geometries and a
logical space consisting of a Cartesian mesh Iach grid
point in the physical space is mapped one-to-onc to the
Cartesian mesh inthe logica space. All physical quan-
tities are computed in the physical space However, par-
ticle tracing as well as the gather/scatter are performed
in the logical space.
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We find that the deformable hexahedral grid is suffi-
cient to handel a wide variety of complex geometries.
For instance, shown in Fig.1 is a cylindrical domain
constructed using deformed hexahedral cells. There are
several advantages of using the deformable hexahedral
cells than using more sophisticated grids, such as tetra-
hedral cells or unstructured grids. The major advantage
is that the logically Cartesian connection of the cells
preserves the nearest neighbor relationships and avoids
the complications of indirect addressing of unstructured
grids. The location in memory of quantities defined in
neighboring cells can be easily computed without mem-
ory references. (This is in contrast with an instructed
grid where the neighbors of a given cell must be found
by lookups in a table.) Hence, particles can be located
amost as efficiently as that in an orthogonal grid PIC
code. for gather and scatter calculations. This is es-
pecialy important for large scale simulations because a
PIC code typically spents most of its computing time
to push particles. The use of a Cartesian logical space
aso significantly simplifies the procedures for particle-
grid interpolation on non-orthogonal grids. Gather and
scatter algorithms developed for Cartesian grid baaed
electromagnetic PIC codes (for example, the rigorous
charge conservation current deposit) maybe utilized di-
rectly. (For tetrahedral and unstructed grids, these in -
terpolations can be very complicated.) Finally, the im-
plementation of the code on to parallel supercomputers
is amost identical to that of the Cartesian grid based
parallel KM P1C code [Wang et al.,1995].

Thenumerical algorithm is described in Section 2. In
Section 3, we perform numerica tests of the code and
study the accuracy of the algorithm The performance
of the code on a MIM 1) parallel supercomputer is dis-
cussed in Section 4. Section 5 contains a summary and
conclusions.



2. Algorithm

Governing Equations

‘The governing eguations in an electromagnetic PI1C
code are Newton's second law for individua particle tra-
jectories:
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where ym= m/\/1 —v2/c*1s the relativistic mass of
the plasma particle, and the Maxwell’s equations for the
macroscopic electromagnetic field:
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The charge density p and the current density J are
derived from the motion of plasma particles and satisfy
the charge continuity equation:
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Note if this charge conservation condition can be satis-
fied rigorously numerically, one can update the electro-

magneticfield using only the two curl Maxwell’s equa-
tions.

-V-J

To obtain a numerical solution, the curl Maxwell
equations arc recast. in the integral form by integrating
curl equations over a surface S,
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and the the divergence equations and the conservation
of charge egquation over a volume V,

}{E~ds o= /pdll
s J.
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Computation Grid
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The physical space S1p is discretized into a structured
grid of deformable hexahedral cells which are logicaly
Cartesian. The cells in the physical space may be dis-
torted to fit complex geometries. However, each cell in
Qp is mapped one-to-one to a unit cube in a logica
space §2. The vertices of the cells are at the locations
where the logical coordinates are all integers(See Fig.
2). The neighbor can be found by simply incrementing
indices.

Let r = (r,s, t) denote the the logical space coor-
dinates and x = (z,y, z) the physical space coordi-
nates. A simple tri-linear interpolation is used to map
the logical coordinates to the physical coordinates. For
instance, the mapping to the x coordinate inside cell
(,j, k) is
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The mapping to the y and z coordinates is similar.

Electromagnetic Field Solve

The electromagnetic field portion of the code is based
on the algorithm of Gedney and Lansing[1995], special-
ized to the case of a structured grid of hexahedral cells.
This is a discrete volume generalization of the standard
Finite- Difference Time-Domain (¥ DTD) algorithm and
reduces identicaly to FDTD if the grid is orthogonal.

This algorithm uses a staggered grid system, as illus-
trated inFig.3. For each cell (primary cell), wc define a
dual cell with vertices all at half integers in the logica
space. We shall call the primary cell B grid and dual

(5) cell E grid. The fundamental variables that our code

calculates are B . ds (on each face of 13 grid cells) and
E. ds (on each face of E cells). These are the quantities
that have time derivatives specified on the left hand side
of Eqs. 4 and they appear in the constraint equations
Eqgs. 5. The integrals in Egs. 4 are takento be over a
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single face of a B or E cell, and in kEgs. 5 is taken to
be an integral over al six faces of aB or E cdl. The
current J ds is co- located with ¥ ds. We locate B - dl
on the edges of the E grid and they pass through faces
of the I3 grid. We locate E-dl on the edges of the B grid
and they pass through the faces of the E grid. When
the grid is Cartesian, the edges and the face normals
arc colinear; and the grid system reduce to the familiar
Yee lattice for Cartesian FD'T'D codes [Yee,1965].

We label each grid quantity with the logical coordi-
nates of its center, e.g. a cell is labeled by the coordi-
nates of its center and a B ds by the coordinates of the
face center. Vertices of the B grid and cells of the E
grid are integer triplets, and all other quantities have 1,
2 or 3 half integer coordinates. Faces and face variables
must have a subscript 1, 2 or 3 for the logical coordinate
direction of the norma (replacing the x, y, z subscripts
in a Cartesian grid). Likewise, edges have a subscript of
1, 2, or 3 for the logical coordinate direction of the edge
vector. Thus the B-ds comnponent in direction 1 located
on the face whose centerisatr={(i,7 + 1/2, k + 1/2)
is labeled Bdsy;jy1/2k41/2-

To map these quantities to array locations we simply
drop any haf integers in the coordinates. For simplicity,
below we suppress the subscript on quantities that are at
location (i, 7, k), and for quantities at nearby gridpoints
we include only the coordinates that are offset. For
example we write E . dls; ;41,438 E dls;41- With
this notation, the spatialy discretized curl Maxwell’s
equations are then:

can update the electromagnetic field only using eq(7)
as long as theinitial condition satisfies 5. The system
is then time discretized by staggering ¥. and B by dt/2
and leapfrogging E and B over each other from eq(7)
with time step dt as in the standard FDTD scheme.

Note that this set of equation is not yet complete
until we specify how the edge quantities, the E dl and
the B . dl, are determined from the E ds and the B
ds respectively. For a uniform orthogona grid, ds and
dl arc paraled and we can caculate, for instance B .
dl = B . ds|dl|/|ds|, making Egs. 4 a closed system.
Therefore, there is no rea distinction between face and
edge quantities. In this limit, the method gives second
order accuracy in space. However, for nonorthogonal
coordinates, dl is not parallel to ds, and converting face
to edge quantities is more involved. To obtain B . dl a
a particular cell face, one needs first to find the the
values for B at the four vertices of the face from B . ds
and then do a volume weighted average dotted with
the dual edge vector. The technique to convert face
to edge quantities is due to Gedney and Lansing[1995].
(This technique is also similar to the Discrete Surface
Integral method of Madsen[1995]. ) Interested readers
arc referred to Karmesin et a. [1996] and Gedney and
Lansing[1995] for a detailed discussion.

Finally, once al the B . ds and ¥ ds have been up-
dated, wc also need to calculate the B and E at the
vertices of the primary grid, By... and E,.,, because
By.riand E, .. are the field vectors used to push parti-
cles. To cdculate the fields a a vertex, face quantities
ds) adjacent to this vertex arc aver-

For h, vert the caleulation of B, ..¢ involves
aeﬁ: that O?XE” ort involves 8 E d&
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Push

(7) The particlepush part includes interpolating fields
B dls;.y- B . dL+4 B .dh -- B q, - fo particle Positions (gather), updating particle trajec-

tories (particle move), and depositing particle currents
(scatter). In our code, the particle position is kept in
logical space while the velocity is kept in physical space.

dB.-ds; = E-dlyyy- E-dl4 E-dls - E- dlq,H(B ds and E .
dB ds; = E dlgiyi-FEdlz+ E-dl - E~d11k+112B' ds
dB dss =E.dlj;;1- E-dli+ E- dl; --E dlji;
dE ds; = B.dlhp-B.dhy 11 . dl-- Bdly;

+J ds;
dE ds, =

4 J ds;
dF ds; = B-dlj;., - B-dl;4 B-dl, --B dl;;.
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By using the staggered grid, these equations will hold
automatically for the discretized field divergence condi-
tions (eqs 5)
0 :B'dSI“B‘dSI‘Hl—{FB-dSQ-
B d S, .. t B (ng - B dsg’ k41 (8)
pdv = E-dSl - E ds,,,-. 1 - I‘)d‘u -
E - dSz’j_l + E- dS3 - E - dS3'k -1

Therefore, if the particle push part of the code maintain
the charge conservation conditioneq(3) rigorously, one

Setting the particles’ fundamental shape and position in
logical space simplifies both the force interpolation and
the current deposit because the interpolation weights
arc simple linear functions of each logical coordinate.
We keep the particle velocity in physical space because
it is necded for use in the calculation of the Lorentz
force and the current deposit.

Galher and Scatter

The field interpolation (gather) and c urrent deposit
(scatter) are done in logical space which is Cartesian.
Therefore, the numerical schemes for field iuterpolation



and current deposit are exactly the same as that in a
flat grid electromagnetic PIC code (for instance, sce
Wang et al.[1995]). In particular, the current deposit
isbased on the charge conservation scheme discussed in
Villasenor and Buneman([1992) which satisfies the dis -
cretized charge conservation condition

d,pdV = J- d31 ~-J 'dsl,H—l +J 'd82 -~

J. dSQ,j.H‘l" J ‘dS3 -J ‘dSs,kJ,l
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rigorously. Here pdV is the total charge in a single cell
of the E grid and J . ds is the current crossing a face of
the E grid. The current deposit is done by calculating
for each particle within a time step how much charge
crosses each face of the E grid using the cells in logical
space.

Particle Move

The trajectory of each particle is integrated using a
time-centering leapfrog scheme for eq(1). From the ve-
locity in physical space v, the logical space position g
is readily obtained from

dr
e R(x) v (lo)
where 5
k() =1 a((i Zs/,’:))]_ 1

is the rotation matrix. (The physical location of the
particle can be easily calculated from g using the geom-
etry information for each cell. ) The numerical scheme
for particle move on non-orthogonal grid, which requires
a modification to the simple leapfrog update of x and v
for an orthogonal grid [Birdsall and Langdon,1985], is
as follows:

1. Identify particle location at step » in the logical space
and interpolate the field value to the particle position
E(r), B(m

2. Update v in physical space: u=+v

n41f2 | ,n-1/2
a2y n-1/2 — dt[-g—E”4.ll tu q
m 2y m

3. Advance r in the logical space with a predictor.
corrector scheme:

3.1 calculate the rotation matrix at r*, R(z")

3.2 predict r"t1/2:

rei V2ot 4 R@e) vt Y 2de)2

3.3 caculate the rotation matrix at ™! 1/2 R(x"1/7)
3.4 advance r afull time step:

rn-{l:_: I+ R(rn+1/2) ) vn-}l/?dt

I)"
— ~———<->~'X-—'Y""c- |lution for a given distorted grid.

There are two ways to calculate k. One way is to
calculate k2 at cach vertex once at the start Of the com-
putation and then interpolate R to the particle position
in the particle update using linear interpolation in log-
ical space. The other is to calculate K directly at the
particle position when needed.

3. Numerical Tests and Accuracy Analysis

Particle Push

We first test the particle push part of the code by con-
sidering single particle motions. A test case is shown in
Fig.4. In this test case, we consider a domain where the
z coordinate is deformed from its Cartesian grid loca
tion by a sin(my) and the y coordinate is deformed by
asin(maz) (Fig.4a) (Where a= 2 and m =8x/L) There
is a constant background FE field along the y direction,
Ey, and a constant background B field aong the z di-
rection, B,. Two charged particle trgectories in the
logical space and the physical space are shown in Fig-
ures. 4b and 4c, respectively. Fig.4c shows the correct
E x B drift of the particles in the physical space.

In an orthogonal grid PIC code, the leapfrog scheme
for particle update has second order accuracy in time
and space. in the non-orthogonal grid PIG code, the
particle move algorithm involves transformation be-
tween the physical space and the logical space through
a rotation matrix. We next derive the accuracy of our
particle move scheme.

For simplicity, let's consider a 2-dimensional domain
shown in Fig.5, where the y coordinate is deformed from
the Cartesian location by dy = « sin mz. Hence, the
discrete grids are

z(i, j) = ih
y(i, j) = asin{mih)) + jk

(11

where & is grid spacing (h = L/N;, L, the system
length, Ny number of grid points). mhis the grid reso-

From eq(6), the t ransformat ion between €2, and €2,
withiu the (i, j) cdl is

r =

)

z(i, )+ rh (12)
= y(i,5) 4 a(sin(m(i 4 D) - sin(mih))r + sh

f

where r,s€ [0, 1]. hence the rotation matrix is

dz dr

@ - a -
dy . . in(min)) & &
5 = a(sin(m(z + 1)h) -- sm(mzh))a-t + hdt
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in the limit of a continuous grid, h - » O, the grids are
given by

Ch
asin(m¢h) -+ nh

r =

y ==

where ¢,n € (—co, cm). For a continuous grid, the rota-
tion matrix is simply

dx d(
] (14)
dy d¢ dy
il amh cos(m(h)—dt + 1 I
= a(mhcos(mih) — m?ésin(mih) 4
d¢ dn
2 — —
o(m*hé) o +hdt

where (=1ik+6. The difference between eq(14) and
eq(13) is:

error = sin(mih)amzh(g - &) ~ O(am?h?)  (15)

This is the numerical error introduced by the rotation
matrix.

For a nuinerical test, we consider a particle moving
under no force field with an initial velocity vzo along the
x direction in the domain shown in Fig.5.Fig.6 shows
the maximum spatial error as function of a for three
different grid resolutions mh = 1,2, and4. Fig.7 shows
the error in the particle’s trgjectory as a function of its
z position for different grid distortions «, grid resolu-
tions mh, and time steps vqodt/h.In agreement with
the above derivation, we find that the error is linearly
proportional to grid distortion, é/h o< O(a)},and second
order in the grid resolution 6/h oc O(m%h?).The spatial
error 6/h in the trgjectory is independent of the time
step vyodt/h. We have done numerical testing on other
smoothly distorted grids, and observed same accuracy
results.

Hence, for a non-orthogonal grid, the particle move
scheme is still second order accurate in time and space

Error=0(dt?) + O(am?h?) (16)

Field Solve

We next test the electromagnetic field solve part of
the code. When the grid is orthogonal, as discussed in

Section 2, the field solve reduces to the standard FDT1D)
scheme and has a second order convergence rate. When
the grid is non-orthogonal, we are unable to anayze
the accuracy of the field solve agorithm analytically.
Hence, we perform numerical tests to study this issue.

We consider the propagation of a plane electromag-
netic wave in a vacuum domain without plasma parti-
cles. We consider a rectangular box domain with length
Ly =1L,= 10 and I, = 20. The domain is initially
loaded with a plane EM wave propagating along the
z direction with wave number k,=2a/L,. Periodic
boundary condition is applied to all box surfaces.

The physica domain is discretized into a grid with
N:,Ny, and N, grids in each direction

z(4,J, K) = ih+asin(mzih)sin(my jh)sin(m, kh)
y(i,5,k) = jh+ asin(mzih)sin(myjh) sin(m, K1Y)
k(i, j, k) = kh+ asin(mzih)sin(my jh)sin(m, kh)

where h = L;j/Nyand ml = 2x/L;(I=2,y, 2). A y-z
cutting plane of such a domain is shown in Fig.8.

Wc perform numerical tests under different grid reso-
lutions, h, and grid distortions, «, and compare numer-
ical solutions with the analytical one. In the numerica
tests presented here, the following four sets of grid nurn-
bers (N> x Nyx N,) are used: 8 x 8 x 16 (h = 1.25),
16 x16x 32 (h = 0.625), 32 x 32 x 64 (h = 0.3125)
and 64 x 64 x128 (h = 0.1563). For grid distortion, we
consider a = 0.4, 0.8, and 1.2.

In Fig.9, we fix the grid distortion at o« = 1.2 and
compare the total field energy for the four different grid
resolutions as a function of time. Anayticaly, the total
field energy is a constant at Fy;a = 1000. For the 8 x
8 x 16 grids, the error in field energy is éE/E1a~0.02.
Howver, with 64 x 64 x 128 grids, there is little error in
I’]ﬂd.

Since the particle push utilizes the field vectors at the
vertices of the primary grid, Eyer¢ and Byert, to push
particles, wc next evaluate the difference between the
non-zero analytical field component and the numerical
one at the vertices of the primary grid. We use the
maximum difference between the numnerical E,,.,;and
the analytical oncat the location with imaximum grid
distortion, Err, asaincasure of the numerical error. 1n
Fig.10 we plot }/»ras a function of the grid resolution
h for all three grid distortions as well as the orthog-
onal grid (a== O). The error shows a second order
convergence (IrrocO(h?)), for the orthogonal grid, as
expected. For the three non-orthogonal grids, our nu-
merical tests show a convergence rate of Err oc O(h?)
with 1.6 <5< 1.85.



The reduced accuracy in the field solve is clue to the
algorithms of calculating vertex quantites (B, . and
Eere ) and edge quantities (B . d1 and E,. dl) from face
quantities (B-ds and E-ds). As discussed in Section 2, a
vertex quantity is obtained by averaging the face quan-
tities adjacent to the vertex, and an edge quantity of a
particular face is obtained by a averaging the face quan-
tit ies adj scent to that face. Because of this averaging,
for non-orthogonal grids the field solve gives a spatial
accuracy in between the first and second order. Hence,
in practical application, one should try to minimize the
regions of distortion to improve the overall accuracy of
the results. A direction for future work is to improve
the algorithms of converting the face quantities to edge
and vertex quantities.

The above results concern a grid distorted in al three
directions. Next we also run the same test case for a grid
distorted in two directions:

z(i, j,k) = ih+asin(m,ik)sin(myjh)
y(i, §, k) = jh + asin(mih)sin(myjh)
k(i, j, k) = kh

and a grid distorted only in one directions:

z(i,j,k) = ih + a sin(mih)
y(i,5,k) = jh

In Fig. 11 we compare Err as a function of h for the 1-
D, 2-D, and 3-D grid distortion case (with « = 0.8) and
the NO distortion case. For the I-1) and 2-D distortion
case, the results yield a much better accuracy than the
3-D distortion case. The accuracy of the 1-1) distortion
case is amost the same as that of the n-distortion case.
This is because in the 1-D and 2-D distortion case the
direction of spatial dependence of the solution, i.e. z,
is not distorted. This suggests that one may also im-
prove the overall accuracy by minimizing the distortion

of the grid in the direction of spatial dependence of the
solution.

EMPIC

Finaly we test the entire P1C code. For this test, we
consider a counter streaming beam system: two equal
electron beams arc set to counter stream in the x direc-
ion with drifting velocities va = 4-0.4¢c. The electrons
within each beam follow a Maxwellian distribution with
thermal velocity v;=- 0.05¢. Theions arc cousidered
as a fixed background. This counter streaming systern
generates the well-known two-streamn instability

Again we consider a rectangular box domain with d is-
torted grids described by eq(1 7). Periodic boundary

conditions are applied to all surfaces. We take grid dis-
tortion to be « = 0.2 and grid resolution h == 1. In
Fig. 12 we plot electromagnetic field energy f+yi4, parti-
cle kinetic energy Fiypart; and total energy in the system
Eywr as a function of time.Fig.12 shows the correct
behavior of energy transfer between the particles and
the fields as a result of the instability excitation and
saturation, while Fy, stays as constant as it should
be. InFig.13 we compare Fyia and Fyare for differ-
ent grid distortions, & = O, 0.1, and 0.2. In all the three
runs, the maximum fluctuation of the total energy is
6Elog/Etoz <0.015.

4. Performance on a MIMD Parallel Computer

The paralel implementation of this P1C code is iden-
tical to that of our Cartesian grid based PIC code [Wang
et a, 1995] The code is implemented using the Genera
Concurrent PIC(GCPIC) algorithm [Liewer and De-
cyk, 1989]. The algorithm uses spatia decompositions of
the physical domain to divide the computation among
parallel processors. Each processor is assigned a subdo-
main and al the particles and grid points in it. When a
particle moves from one sub domain to another, it must
be passed to the appropriate processors, which reguires
interprocessor communication. Interprocessor commu-
nication is also necessary to exchange guard cell infor-
mation for current deposit and field solve. Interested
readers are referred to [Wang et al.,1995 and 1997] for

detailed discussions on the parallel implementation of a
M PIC code.

In this section, we present result from running this
code on the JPL.CRAT T3D parallel supercomputer.
The CRAY T3D at J P, has 256 numerical nodes, each
with a memory of 64 Mbytes (8 Mwords) and a peak
speed of 150 Mflops. Hence, the total memory size is

16.384 Gbytes (2.048 Gwords) and the total peak speed
38.4 Gflops.

To evaluatle the performance of the nomn-orthogonal
EMpIC code, we run the code for the test case of two-
stream instability described in the last section. Wc mea-
sure the total loop time per time step Zror as well as the
ttimes spent by each subroutine of the code for a series
of runs. Since each processor runs the code with dlightly
different times, these times measured are the maximum
processor times on a parallel computer.

weperform a scaled problem size analysis, i.e. keep-
ing the problem size am each processor fixed while in-
creasing the number of processors used. We load the
following problem: each processor has a cubic subdo-
nuain of 16 x 16 x 16 cells and 3.16 x 10°particles (~ 77



particles/cell). ‘I'he problem size is scaled up in three
dimensions. When this problem is loaded on all 256
nodes, the total problem size is 64 x 128 x 128 (1.05
million) cells and about 80.8 million particles. The run
times of this code as a function of the number of pro-
cessors used, Ny, are shownin Fig.14. For comparison,
we aso plot the results from running our Cartesian grid
EMPIC code on the same figure.

Fig.14a shows the total loop time, T;,,, and the time
spent by the subroutines to trade particle and guard
cell information between processors, 7 comm. Since the
global conditions are applied within the same subrou-
tines for interprocessor communications, 7eomm iS the
sum of the time spent by the code on communications
and global boundary conditions. When the number of
processors used is much larger then one, T¢omm iS dom-
inated by the interprocessor communication time and
hence it is a good measure of the parallel communica-
tion cost.

We find, similar to the Cartesian grid F»MPIC code,
T30t for the non-orthogonal grid PIC code stay almost
constant as the number of processors is increased in-
dicating a high paralel efficiency. 7¢omm Only occu-
pies a negligible portion of T;.. The parale efficiency,
€1—Teomm/Ttot, is about 0.96 and 0.98 for the Carte-
sian and non-orthogonal grid code, respectively.

Fig. 14b shows the times spent by the two stages of the
EMPIC codes. We define the particle push time, Tpush,
as the sum of the times for moving particles, depositing
currents, applying boundary conditions, and related in-
terprocessor communications, and the field solve timne,
TYicia as the sum of the times for updating the k and
B fields, applying boundary conditions, and related in-
terprocessor comniunicat ions [Wang et a., 1995]. For
the Cartesian grid code, we have Tpu = 7.97s and
Tyieia ~ 0.039s. While for the non-orthogonal grid
code, 7pysn = 16s and Tyieta =~ ().135s. Hence, the over-
all computing speed of the non-orthogonal grid code is
about half of that of the Cartesian grid code. The par-
ticle push time per particle per time step Tpush/part
is 98.6ns for the Cartesian grid code and 198ns for
the non-orthogonal grid code. Obviously thenon-
orthogonal grid code involves significantly more com-
putations (which also results in the slightly higher ¢.

5. Summary and Conclusions

W c have developed a three dimensional non-
orthogonal grid clectromagnetic PI(; code for paralel
supercomputers. The numerical formulation is based
on hexahedral cells which are logically connected cu-
tric cells but distorted to body-fit complex geometries

in physical space. The particle push algorithm calcu-
lates particle velocities in the physical space but per-
forms particle tracing and grid-particle interpolations
in the logical space. The field solve algorithm is an ex-
tension of the classica staggered mesh finite-difference
time-domain (FDTD) to non-uniform meshes [Gedney
and Lausing, 1995] and reduces to the standard FDTD
algorithm when the grid is Cartesian. The paralel im-
plementation of the code is amost identical to that of
the Cartesian-grid EMPIC code [Wang et al.,1995] The
performance of the code is evaluated on a 256-processor
CRAY T3D. It is shown that the code runs with a high
parallel efficiency of ¢ > 96%. However, since the non-
orthogonal grid code involves significantly more calcula-
tions, the speed of the non-orthogona grid code is only
ahout a half of that of the Cartesian grid code by Wang
et al[1995,1997]. Numerical experiments are performed
to test the accuracy of the code. For a distorted grid,
the accuracy for the particle push agorithm is second
order in time and space. However, while the classical
FDTD algorithm has a second order accuracy in space,
the accuracy of the field solve agorithm is between first
and second order for non-orthogonal grids. Therefore,
the overal accuracy is restricted by that of the field
solve. For grids with large distortions, the field solve
algorithm may also become unstable after several thou-
sands time steps. An outstanding area of research is to
improve the accuracy of the electromagnetic field solve
on distorted meshes.
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Figure Captions

Figure 1: Illustration of a cylindrical domain con-
strutted using deformable hexahedral grids.

Figure 2: Transformation between logica space and
physical space

Figure 3: Location of electromagnetic field variables
on the grids.

Figure 4: Particle push test: plasma paticle E x B
drift. @) Distorted grids in physical space: x is distorted
by asin(my) and y by asin(mz); b) Particle orbits in
logical space; ¢) Particle orbits in physical space.

Figure 5: A distorted grid used in particle push test:
z(i,j) = th and y(i, j) = jh + asin(mih).

Figure 6: Maximum error in particle orbit. Grid res-
olutions: 1711 = 1 (solid ling); mh= 2 (dashed line);
and 17111 = 4 (dotted line).

Figure 7: Local error in particle orbit. a) a = 2,
voltth = 0.1; b) @ =1, volt/h = 0.1; ¢)a=:1, volt/h =
0.4. (Grid resolutions: mh = 1 (solid line); mh = 2
(dashed line); and mh = 4 (dotted line) ).

Figure 8: A distorted grid used in field solve test and
PIC code test. The grid point at (z, Y, z) is distorted
by asin(2rz)sin(2ry)sin(2rz).

Figure 9: Field solve test: propagation of plan elec-
tromagnetic wave. Tota electromagnetic field energy.
The grid distortion is o= 0.8. ‘I"he number of grid point
used are 8 x 8 x 16 (dashed line); 16 x 16 x32 (dotted
line); 32 x32 x 64 (dot-dashed line); and 64 x 64 x 128
(dot-dot-dashed  ling).

Figure 10: Error in vertex E field, Fyer ¢, a location
of maximum grid distortion. Grid distortions a = O
(solid line); o = 0.4 (dashed line); & = 0.8 (solid line);
and a = 1.2 (dot-dashed line).

Figure 11: Error in FEyer,. NoO distortion (solid line);
1-D grid distortion (dashed ling); 2-I> grid distortion
(dotted ling); and 3-D grid distortion (dot dashed line).
For all distorted grids, a = 0.8.

Figure 12: P1C code test: two-stream instability. To-

tal cnergy, field energy, and particle energy. Grid dis-
tortiona= 0.2. Grid resolution h = 1.

Figure 13: Comparison of the particle energy and field
energy for no grid distortion (solid line), distortion with
a= 0.1 (dashed line), and distortion with a=: 0.2
(dashed line).

Figure 14: Run times of a Cartesian grid EMPIC code
(solid line) and the non-orthogonal grid EMPIC code



(dashed line) on a 256-processor Cray 131). a) Total

loop time T} @nd cornmunication/boundary condition
time Tromm. b) Particle push time Tpush and field solve
time Tield-
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